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SUMMARY

The celebrated laboratory experiment of Plumb and McEwan (J. Atmos. Sci. 1978; 35:1827–1839)
represents a dynamical analogue to the quasi-biennial oscillation (QBO), the dominant variability in
the equatorial stratosphere. The experiment demonstrates the in�uence of small-scale �uctuations on the
long-time behaviour of larger-scale �ows. In the direct numerical simulation of the laboratory experiment
Wedi and Smolarkiewicz (Int. J. Numer. Methods Fluids 2005; 47:1369–1374) showed the occurrence
of a number of internal gravity wave processes: wave re�ection, wave–wave–mean �ow interaction,
critical-layer formation and subsequent wave breaking, all of which are found in the atmosphere. Here,
a comprehensive investigation of the energetics of wave-driven mean �ow oscillations is presented.
The analysis con�rms the accurate incorporation of the external forcing in the simulation, utilizing a
generalized time-dependent coordinate transformation. An available potential energy analysis (J. Fluid
Mech. 1995; 289:115–128) is used to assess the process of �uid mixing and potential to kinetic energy
exchange in wave–mean �ow interactions. The results aid to clarify the physical mechanisms as well
as the role of numerical dissipation for the onset and the development of zonal mean zonal �ow
oscillations and distinguish the accuracy of particular numerical choices for the simulation of wave–
driven �ow phenomena, i.e. �ux-form Eulerian or semi-Lagrangian advection algorithms. Copyright
? 2005 John Wiley & Sons, Ltd.

KEY WORDS: QBO; wave–wave and wave–mean �ow interaction; wave breaking; turbulence; direct
numerical simulation; MPDATA; �ux-form �nite volume; advective-form semi-
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1. INTRODUCTION

One distinguishing aspect of atmospheric turbulence compared to strati�ed homogeneous shear
�ows is the existence of locally turbulent regions resulting from wave overturning and break-
ing, representing a far-�eld response to an internal or external forcing [1]. For example, one
observes the interference of waves originating from di�erent sources, wave re�ection at inter-
nal or external boundaries, wave–mean �ow interactions and wave dissipation due to critical
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layer momentum �ux changes. This transition from wave instabilities to turbulence for internal
gravity waves has been comprehensively reviewed in [2]. A striking example of the in�uence
of small-scale �uctuations on the larger-scale �ow is the quasi-biennial oscillation (QBO), the
dominant variability in the equatorial lower stratosphere [3]. The principal mechanism of these
periodically reversing winds in the tropics was demonstrated in the laboratory experiment of
Plumb and McEwan [4]. The laboratory analogue of the stratospheric equatorial oscillation
consists of a cylindrical annulus �lled with density-strati�ed salty water, forced at the lower
boundary by an oscillating membrane. At su�ciently large forcing amplitude the wave motion
generates a longer period zonal mean �ow oscillation. The direct numerical simulation of the
laboratory analogue exhibits a number of internal gravity wave processes, wave re�ection,
wave interference, wave–mean �ow interaction, critical layer formation and subsequent wave
breaking within this layer [5, 6]. Thus the laboratory experiment represents a canonical case of
irreversible processes leading to the self-organization of new spatio-temporal structures [7]. In
the experiment, a ‘self-destructing’ critical layer is formed dynamically by wave–wave inter-
actions (i.e. t=235 and 265min in Figure 2), determining the subsequent temporal and spatial
structure of the overall mean �ow pattern: a mean shear layer forms, whereby the enhanced
convergence of the wave-induced stress within the critical layer through wave breaking within
and below propels a downward growth of the layer. The mean �ow arriving at the oscillating
membrane �lters the waves of opposite direction to allow only waves with reversed phase
speed. These waves subsequently initiate the same process in opposite direction resulting in
the overall �ow pattern depicted in plate (a) of Figure 1 (i.e. periodically reversing zonal
mean zonal winds, see References [6, 8] for details). This particular experimental setup sim-
pli�es the analysis of the �ow compared to the atmospheric QBO, since at any chosen time
in the �ow evolution only an externally forced single horizontal wave-number and a discrete
range of vertical wave numbers are observed.
Laboratory experiments that isolate particular �ow structures have long been regarded as

complimentary tools for studying the behaviour of large scale geophysical �uids, such as the
Earth’s atmosphere. Here, we extend the use by means of direct numerical simulation, to
enhance our physical understanding of the observed phenomena and to stress the role of the
numerics in the simulated (canonical) �ow evolution.
In this study, the particular focus is on the energetic evolution, as we seek to identify and

quantify the individual processes and mechanisms (numerical or physical) through which they
derive their energy. However, the use of volume averaged and accumulated quantities for the
�ow analysis at intermittent analysis times (typically available in long climate simulations)
is problematic. The energetic analysis of the evolution equation of potential energy does not
allow to readily distinguish reversible and irreversible processes [9]. Also energetically, rela-
tively small instantaneous variations in the volume averaged integrals can have a substantial
in�uence on the long-term �ow evolution. Further, a temporal or spatial separation of the
involved processes is often di�cult in practice. There have been a number of investigations
into the energetics of the transition to turbulence which consider either waves or turbulence
[10]. Often a separation of a mean and a �uctuation is used, while further splitting into a
wavy and a turbulent part by suitably averaging over a wavelength or cycle of the perturbation
[11–13]. Using an averaging adjusted to the isolated problem at hand (e.g. wave breaking
events at a pre-existing asymptotic critical level [11]) may provide more insight into the mech-
anisms of energy exchange. However, the universality of the method has been criticized for its
applicability in practice, in particular in view of the role of buoyancy, due to the developing
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Figure 1. Time–height cross-section of the zonal mean �ow velocity in the viscous 2D numerical simu-
lation with noslip rigid boundaries, with a �ux-form Eulerian advection scheme (plate (a)) and the same

with an advective-form semi-Lagrangian setup (plate (b)).

(not a priori known) anisotropy of wave-driven �ows and the intrinsic coupling of waves
and turbulence in inhomogeneous strati�ed media. We failed to �nd an averaging procedure
that would suitably separate the oscillating reversible and irreversible contributions to the total
potential energy in our numerical simulations of the Plumb and McEwan experiment.
Instead, we apply the energy budget analysis described in Reference [9]. The authors use

the idea of Lorenz [14] to subtract at every analysis time a particular energy from the reservoir
of total potential energy. This subtracted energy would exist if the mass was redistributed such
as to yield a horizontal, stable strati�cation. The resulting energy is called available potential
energy [14]. The ‘Carnot process’ of generation of available potential energy and subsequent
dissipation by turbulent di�usion (entropy production) has become a main paradigm underlying
a variety of nonlinear �uid systems including the Earth and other planets [15]. The underlying
energetic cycle is summarized in Figure 3. The diagram illustrates the di�erent forms of
energy in a Boussinesq system and their corresponding reversible and irreversible exchanges
and external �uxes. In the context of the laboratory setup, the external energy symbolizes the
storage reservoir of externally induced input to the �ow via the oscillating membrane. The
boundary oscillation enforces gravity waves in the strati�ed �uid, contributing to the available
potential energy and the reversible exchange with kinetic energy through the buoyancy �ux.
As a result of the emerging non-linear �ow disturbances the �uid is mixed contributing to the
increase of background potential energy. Internal energy denotes the storage of energy within
the �uid, with irreversible �uxes due to viscous dissipation of kinetic energy and irreversible
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Figure 2. Zonal wind (a)–(c), the vertical pro�le of zonal mean wind (d)–(f) and its variance with
height, and the Reynolds stress (g)–(i) and its vertical divergence, respectively, for the times (1–3)

indicated in Figure 7. The contour interval in plate (a)–(c) is 2mm s−1.

conversion from internal to potential energy, such as due to the di�usivity of salt in water.
Section 3 de�nes the di�erent forms of potential and kinetic energy in more detail.
The long-time behaviour of the repeating mean �ow reversals in the direct numerical simu-

lations of the laboratory experiment (cf. Figure 1) allows to identify repeating patterns in the
above-described energetic cycle. They in return give insight into the mixing e�ciency and the
subsequent transitions from wavy structures to turbulence to changes in the overall background
�ow. Furthermore, our analysis allows to identify the role of the numerical formulation for
the �ow evolution, when comparing the application of a conservative �ux-form �nite volume
method (Eulerian) with the corresponding trajectory based advective form (semi-Lagrangian).
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Figure 3. Energy diagram for density strati�ed Boussinesq �ow adapted from Reference [9]. The energy
within a �xed volume is stored as kinetic, available potential, background potential, or internal energy.
Energy is input to the �ow through surface �uxes. Reversible and irreversible energy exchanges occur

through buoyancy �ux, diabatic mixing, viscous dissipation, or di�usion.

The latter may have implications on the design of next-generation high resolution models of
weather and climate.
The paper is organized as follows. Section 2 brie�y summarizes the numerical setup of

the simulations. Section 3 de�nes the computed energetic quantities. Section 4 discusses the
time evolution of such volume averaged quantities in the context of the overall �ow evolution
from a physical and from a numerical perspective and Section 5 concludes the paper.

2. THE NUMERICAL MODEL

In the direct numerical simulation of the laboratory experiment of Plumb and McEwan [4] we
simulate a non-rotating, density strati�ed viscous Boussinesq �uid, where the strati�cation is
provided by a horizontally homogeneous, linear background density pro�le �e :=�0(1− Sz)
with �0 = 1025 kgm−3 and strati�cation S = 0:25m−1, due to the varying salt concentration
in water. The equations of motion are in this case given as

∇ · (�0v) = 0 (1a)

Dv
Dt
= − ∇p′

�0
+ g

�′

�0
+
1
�0

∇ · � (1b)

D�′

Dt
= �∇2�′ − v · ∇�e (1c)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1175–1191



1180 N. P. WEDI

Here, the operators D=Dt, ∇, and ∇· symbolize the material derivative, gradient, and
divergence; v denotes the velocity vector; �′ and p′ denote, respectively, density and pressure
perturbations with respect to the static ambient state described by �e; g symbolizes the gravity
vector, and �0 a constant reference density. ∇·� is the divergence of the viscous stress tensor
(a kinematic viscosity �=1:004×10−6 m2 s−1 is assumed); and � (=1:5×10−9 m2 s−1) is the
di�usivity of salt in water.
Equations (1) are formulated in time-dependent curvilinear coordinates (�x; �z; �t) [16, 17],

employing the generalized Gal–Chen coordinate transformation

�t= t; �x= x; �z=H0
z − zs(x; t)
H0 − zs(x; t)

(2)

whose theoretical development and e�cient numerical implementation were discussed thor-
oughly in Reference [18]. The transformation (2) implies the addition of a regularly oscillating
external forcing of the form

zs(x; t)= � sin(kx) sin(!0t) (3)

with amplitude �=0:008m, wavenumber k=2�8=Lx, and forcing frequency !0 = 0:43 s−1;
Lx=1:517388m denotes the zonal domain length (see Reference [5] for a description of a 3D
forcing). For simplicity, we consider here only the equatorial x–z plane, representative of the
mid-channel of the cylindrical annulus in the laboratory. A horizontally periodic domain is
used with 383×188 grid intervals, domain height H0 = 0:43m, and rigid noslip boundaries. The
zonal mean zonal �ow oscillation was started with an initial �ow in the near-membrane layers
(d0 = 0:06m) using ue= u0[1− 0:5�(1 + tanh(z − d0)=�)] with u0 = 0:02m s−1, �=0:9999999,
and �=�z. A time step of 0.05 s was used and simulations were run for upto 6 h. While not
quantitatively comparable to 3D simulations, it is shown in Reference [6] that 2D numerical
simulations of the Plumb and McEwan laboratory experiment exhibit a similar time evolution
based on essentially the same physical processes.
The prognostic equations in (1) may be written in a compact conservation-law form using

the transformed coordinates in (2) as

@�∗ 
@�t

+ �∇ · (�∗ �v∗ )=�∗R (4)

where �∇ := (@=@ �x, @=@�z), �∗=�0 �G, and  symbolizes a physical velocity component or
density perturbation; here �G denotes the Jacobian of the transformation. R summarizes the rhs
of the equations in (1) (see Reference [16] for details). In (4), the advecting contravariant
velocity �v∗ is related to the physical velocity components vk as

�v∗k := d �xk=d�t=
@ �xk

@t
+ G̃ j

nv
n (5)

where G̃j
k := (@ �xk=@x j) are renormalized elements of the Jacobian, and j; k=1; 3 correspond

to the �x; �z components, respectively (summation is implied by the repeated index n).
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Alternatively, the same prognostic equations can be formulated in Lagrangian form

d 
d�t
=R (6)

The nonoscillatory forward-in-time (NFT)‡ approximation (cf. Reference [19] for a recent
review) of either formulation—�ux-form Eulerian [20] for (4), or semi-Lagrangian [21] for
(6)—can be written compactly as

 n+1
i =LEi( ̃ ) + 0:5�tRn+1

i (7)

Here, we denote  n+1
i as the solution at the grid point (�t n+1; �xi);  ̃ :=  n + 0:5�tRn; and

LE denotes a NFT transport operator. In the Eulerian scheme, LE integrates the homoge-
neous transport equation (4), i.e. LE advects  ̃ using a fully second-order-accurate mul-
tidimensional MPDATA advection scheme [19, 22]. In the semi-Lagrangian algorithm, LE
remaps transported �elds, which arrive at the grid points (�t; �xi), to the departure points of the
�ow trajectories (�t n; �x0(�t n+1; �xi)) also using MPDATA type advection schemes [21, 23]. MP-
DATA is a �nite-di�erence algorithm for approximating the advective terms in �uid equations.
The solution procedure of MPDATA is iterative with a �rst pass using a simple donor cell
approximation which is positive de�nite but only �rst-order accurate. In one dimension equa-
tion (4) (assuming R=0, �∗=1 for simplicity) takes the form

 n+1
i =  n

i − [F( n
i ;  

n
i+1;Ci+1=2)− F( n

i−1;  
n
i ;Ci−1=2)] (8)

where the �ux function F is de�ned in terms of the local Courant number C ≡ u�t=�x by

F( L;  R;C) ≡ [C]+ L + [C]− R (9)

with [C]+ ≡ 0:5(C+ |C|) and [C]− ≡ 0:5(C−|C|). The second pass increases the accuracy by
estimating and compensating the truncation error of the �rst pass to higher order. The scheme
is reapplied using antidi�usive advective velocities, which are derived analytically from the
advected �eld, and based on the truncation error analysis of the donor cell scheme [22]. All
forcings on the rhs of Equation (7) are treated implicitly. Together with the curvilinearity
of the coordinates, this leads to a complicated elliptic problem for pressure (see Appendix
A in Reference [16] for the complete description) solved iteratively using the preconditioned
generalized conjugate-residual approach—a nonsymmetric Krylov-subspace solver [24]. The
viscous and di�usive terms are computed to �rst-order accuracy, assuming ∇ · �n+1 =∇ · �n+
O(�t) (and similar for �∇2�′); see Section 3.5.4 in Reference [22]. The 2D simulations
shown have been performed on 16 processors of an IBM power4 cluster, using typically 2 h
elapsed time per simulated hour.

‡‘Nonoscillatory’ refers to monotone schemes, e.g. total variation diminishing (TVD), �ux-corrected transport
(FCT), and various �ux-limited and sign-preserving schemes, that suppress=reduce=control numerical oscillations
characteristic of higher order linear schemes. ‘Forward-in-time’ labels a class of generalized Lax–Wendro� type
methods.
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3. ENERGY ANALYSIS

The perturbation potential energy may be de�ned as the volume integral

Ep=g
∫
V
�′z dV (10)

Note that �e has been subtracted in the volume averaged quantities Ep in Equation (10), Eb

in Equation (14), and the buoyancy integral in Equations (12) and (13), to enhance the direct
comparability with other equation terms. The kinetic energy is given as

Ek =
�0
2

∫
V
(u2 + v2 + w2) dV (11)

An equation for the time rate of change of kinetic energy can be derived by taking the scalar
product of the momentum equation (1b) with the wind vector v and the de�nition (11) (see
References [9, 25] and references therein):

d
dt

Ek = −
∮
S

[
p′v+

�0
2
v(u2 + v2 + w2)− v · �

]
· n̂ dS −

∫
V
g�′w dV − D (12)

Here the �rst term on the right-hand side gives the reversible rate of change of kinetic energy
from pressure work and advection, and the irreversible viscous di�usion of energy across the
bounding surface S. The second term denotes the reversible exchange with potential energy
via buoyancy and the last term D symbolizes the irreversible exchange of kinetic to internal
energy through viscous dissipation. Consistent with its numerical evaluation in the model
we computed only the total e�ect of viscosity as a volume integral of the viscous term∫
V v · ∇ · �. Similarly, an evolution equation for potential energy (10) is derived from the
continuity equation (1a) and gz times the thermodynamic equation (1c)

d
dt

Ep =−
∮
S
gz�v · n̂ dS +

∫
V
g�′w dV + �g

∮
S
z∇� · n̂ dS

−�gAxy(〈�top〉xy − 〈�bottom〉xy) (13)

Here, the �rst two terms on the right-hand side denote the reversible change of potential
energy via the advective �ux through the bounding surface S and via buoyancy. The last two
terms specify the irreversible rate change due to di�usive mass �uxes across the surface S
and the conversion rate from internal to potential energy; in the x–z plane the surface area
is simply Axy=Lx, and the surface area average is 〈�〉xy := 1=Axy

∫
A � dx dy. Again, consistent

with the numerical evaluation in the model, we computed only the total e�ect of di�usion
from the volume integral

∫
V gz∇2�. The di�usive surface �ux is then determined from the

di�erence of the total e�ect of di�usion and the last term on the right-hand side in (13).
As pointed out by Winters et al. [9] the evolution equation (13) does not readily al-

low to identify all reversible and irreversible dynamic processes, in particular the translation
of buoyancy. Instead, the authors make use of a reconstructed reference state of minimum
gravitational potential energy to separate diabatic (i.e. �uid mixing) and adiabatic processes.
An analytic justi�cation of this separation is given in Reference [9]. Numerically, we approx-
imate this reference state at every time step by sorting all discrete �uid elements and stably
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restratifying (from left to right) with heaviest elements at the bottom and lighter elements
above. Using the approximate density distribution �∗ obtained in this way, the background
potential energy can be computed as

Eb=
∫
V
gz(�∗ − �e) dV (14)

and the available potential energy Ea can be obtained using (10) and

Ep=Eb + Ea (15)

Following the derivations in Reference [9] one may obtain an evolution equation for the
background potential energy of the form

d
dt

Eb= Sadv + Sdi� − �g
∫
V

(
d�∗
dz

)−1
|∇�|2 dV (16)

where Sadv and Sdi� denote advective and di�usive �uxes across the bounding surface S and
the last term on the right-hand side gives the irreversible rate of change of potential energy
due to material changes of density within the volume V , called diapycnal mixing [9]. Here, the
concept of irreversible mixing readily distinguishes the mechanism from reversible exchanges
of potential energy such as the buoyancy �ux.

4. DISCUSSION

Figure 4, plate (a) in Figures 5 and 6 summarize the time evolution of the individual contri-
butions to the kinetic and potential energy budget for the �ux-form Eulerian case. Trends of
total, kinetic and potential energy are also shown for the six hour integration period. Com-
paring with the time–height evolution of the mean �ow in Figure 1 one can approximately
identify the points of �ow reversal as the decline of increased values of available potential
energy. A comparison of the ‘transient’ energies in Figure 7 together with the di�erent �ow
phases in Figure 2 reveals that peaks of available potential energy coincide with a larger
vertical extent of free wave propagation. Following Reference [12] we additionally divided
the total kinetic energy into a time mean

�K = 1
2 〈 �vt �vt〉xz (17)

and a transient part

K ′= 1
2 〈v′v′

t〉xz (18)

where �vt denotes a time mean velocity over a suitable period (i.e. 4–8 analysed values) and
v′ := v − �vt denotes the corresponding �uctuation; here 〈〉xz :=

∫ ∫
() dA denotes an average

over the two-dimensional domain. It can be seen in Figure 7 that both the transient kinetic
energy and the absolute of the vertically integrated Reynolds stress follow similar patterns
as the available potential energy. This provides three inherently di�erent volume-averaged
means, characterizing the same �ow evolution. Relative minima are associated with wave
interference and depend also on the periodicity of the buoyancy �ux (compare to Figure 6).
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Figure 4. Total, time mean, and transient kinetic energy together with the irreversible,
cumulative, viscous dissipation e�ect for the �ux-form Eulerian case. The decaying trend

of total kinetic energy is also shown.

The available potential energy becomes negative once a critical shear layer has formed. This
happens in our simulation at approximately half the total vertical domain size (≈ 22 cm). Once
the shear layer propagates downward this coincides with decreasing values of the vertically
integrated Reynolds stress and decreasing values of transient kinetic energy. In comparison,
the cumulative rates of the irreversible �uxes of di�usion and diapycnal mixing shown in
plate (b) of Figure 5 exhibit a nearly constant growth. The rate of diapycnal mixing is upto
30 times larger compared to the rate of viscous total kinetic energy dissipation (cf. Figure 4),
indicating a dominant role of diabatic �uid mixing for the background potential energy budget
throughout the simulation. However, this does not necessitate a dominant role in the overall
�ow evolution.
The potential and kinetic energies and the instantaneous and cumulative e�ects of the

reversible and irreversible rates have been used in order to assess the e�ect of numerical
dissipation while accounting for all physical processes as depicted in Figure 3. A summary of
the reversible �uxes depicted in the diagram are shown in Figure 6 for a selected time period.
It can be seen that the magnitude of the surface �ux, calculated via the advective right-hand
side terms in (12) and (13), which feeds the available potential energy and the reversible
exchange with kinetic energy, is nearly equivalent to the buoyancy �ux (the second right-
hand side term in (13)). The reversible buoyancy �ux has a period of 8:5min compared to
the mean �ow reversal period depicted in Figure 1 of 2:5 h, which indicates the two dominant
time scales in the energetic evolution. Figure 4 gives an overview of the kinetic energy over a
period of 3 h of simulation, i.e. 432 000 time steps. The trend of total energy (the sum of the
potential and kinetic energy trends) is shown in plate (a) of Figure 5 as the thick line. Trends
have been calculated for easier separation of the individual cumulative contributions from the
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Figure 5. Plate (a) (top) shows the potential energy budget for the �ux-form Eulerian case: total,
available, and background potential energy, respectively. The irreversible cumulative e�ects of di�usion
and trends of total, kinetic and potential energy are also shown. In comparison, plate (b) (bottom)

represents the potential energy budget for the semi-Lagrangian advection case.

natural larger scale �uctuation of the �ow given by the reversing zonal mean �ow pattern. The
potential energy trend has been calculated as a linear regression of the residual background
potential energy after subtracting the cumulative e�ects of dissipation and diapycnal mixing.
The kinetic energy trend has been calculated using a linear regression (discarding the �rst
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Figure 6. Exchange rates of energy for a selected period. The exchange rates are dominated by high
frequency (≈3.5 buoyancy �ux periods per 30min) reversible oscillations. The instantaneous total kinetic
energy rate is of the same size and opposite to the buoyancy �ux. The instantaneous total potential
energy rate is near zero due to the balance of the buoyancy term and the advective surface �ux of
the same size. The irreversible exchange rates are too small to be seen and are visualised through

their respective cumulative e�ect in Figures 4 and 5.

160 points) of a 130 point running mean of kinetic energy, where the initial value has been
subtracted. After subtraction of all physical contributions to the rates of potential and kinetic
energy we �nd a residual (numerical) loss of kinetic energy of ≈ −5: × 10−5% of the initial
kinetic energy per time step. This may be compared with a loss of kinetic energy in the
numerical weather prediction model at ECMWF, which is ≈ −2:7 × 10−4% of the initial
kinetic energy per time step. The loss is compensated by an almost equal amount of residual
(numerically generated) potential energy growth as can be seen in plate (a) of Figure 5. The
total energy residual is ≈ 1: × 10−10 J per time step which is in the order of round-o� errors.
The Eulerian formulation of the model therefore conserves the total energy invariant of the
analytic Boussinesq equations to the order of round-o� errors. This veri�es the negligible
amount of any arti�cial energy source or sink terms other than the external surface �uxes
(via the oscillating membrane).
The same analysis has been performed for the corresponding simulation using the semi-

Lagrangian advection scheme. As can be seen from plate (b) in Figure 5, the accumulated
physical irreversible rates (i.e. diapycnal mixing and cumulative di�usion) are very similar.
We �nd that the standard deviation of the instantaneous reversible buoyancy �ux for the
semi-Lagrangian case is larger than the Eulerian counterpart and grows in time, whereas in
the Eulerian case the variations around the mean appear to settle to a constant and smaller
value. There is an irreversible growth of the kinetic energy in the semi-Lagrangian case of
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Figure 7. Time evolution of transient kinetic energy, available potential energy and the vertically inte-
grated Reynolds stress for the �ux-form Eulerian case (Eul). The corresponding �ow situation for the
individual markers (1–3) is shown in Figure 2. The dotted line denotes the available potential energy

evolution for the corresponding semi-Lagrangian case (SL).

≈+1:4 × 10−4% of the initial kinetic energy per time step. This adds to a 4–5 times larger
non-conservative irreversible growth of (perturbation) background potential energy compared
to the Eulerian case. This cannot be explained by enhanced mixing, since the cumulative
contribution of diapycnal mixing is nearly the same for both schemes. It may be related
to (arti�cial) irreversible external energy �uxes at the oscillating boundary. However, the
non-conservative growth of the total energy (compared to the �ux-form Eulerian case) does
not appear to directly in�uence the �ow evolution. But di�erences can be seen in the time
evolution of the ‘transient’ energies, when comparing the available potential energy for the
semi-Lagrangian and the Eulerian case in Figure 7. These match the altered corresponding
�ow evolution in plate (a) and (b) of Figure 1. It suggests that the advective-form numerical
scheme contributes to the formation of critical layers in di�erent spatial positions, which
creates di�erent bifurcation points for the �ow development.
To clarify the role of numerical dissipation in comparison to the physical explicit viscous

dissipation in the development of a mean �ow reversal, it is instructive to assess the overall
accumulated numerical dissipation. In the �ux-form Eulerian case it is approximately four
times the ‘natural’ cumulative viscous dissipation. This compares to a ratio of 11:1 in the
viscous semi-Lagrangian case. This may imply an in�uence on the �ow evolution. Figure 8
compares the equivalent inviscid simulations (without explicit viscosity, free-slip boundaries)
of the laboratory setup for both, the �ux-form Eulerian and the semi-Lagrangian case. In the
inviscid case, the Eulerian simulation is also characterized by an irreversible growth of the ki-
netic energy, which—consistent with the viscous simulations—is about 2–3 times smaller than
in the inviscid semi-Lagrangian case. Furthermore, an increased non-linearity is observed in
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Figure 8. Time–height cross-section of the zonal mean �ow velocity in the inviscid 2D numerical
simulation using freeslip boundaries with a �ux-form Eulerian advection scheme (plate (a)) and the

same setup with a semi-Lagrangian advection (plate (b)).

the near membrane layers and in the shear region of the inviscid �ow. The observation is also
consistent with viscous simulations (starting from rest) with di�erent membrane amplitudes,
where we observed an earlier onset of a zonal mean �ow oscillation with increased amplitudes.
It is therefore speculated that an increased non-linearity of the simulated processes leads to a
corresponding local increase in truncation error, which in return leads to the observed increase
of kinetic energy growth. The results suggest that explicit viscous dissipation and numerical
dissipation act similarly. Given the sensitivities with respect to decreasing explicit viscosity
detailed in Reference [6] (i.e. longer period and lesser vertical extent of the zonal mean �ow),
the inviscid �ux-form Eulerian simulation exhibits an asymptotically similar behaviour. With
increased values of strati�cation (S=0:36m−1) the �ux-form Eulerian simulation does not
show a zonal mean �ow oscillation and two strongly elongated vertically staggered mean
�ow layers develop (no oscillation would be expected from the theory of zonal mean �ow
interactions, in the absence of viscosity [26]). In comparison, the semi-Lagrangian simulation
exhibits a physical solution, representative of increased viscosity. The results agree with the
�ndings in Reference [27], where a �ux-form Eulerian formulation, with a small viscosity
explicitly added, gave closer agreement with the corresponding semi-Lagrangian simulation.
Since in general �ux-form schemes have higher-order truncation errors proportional to the
di�erentials of �uxes of the primitive variables rather than to the di�erentials of the vari-
ables themselves (as characteristic of advective form schemes), the authors in Reference [27]
concluded that the overall accuracy of the approximation increases when the �uxes of the
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variables exhibit a greater degree of homogeneity than the variables themselves. This may be
the case in the QBO analogue simulations with fairly steady wave momentum �uxes below
the critical layer.
Errors in the domain-averaged, density-normalized inverse �ow Jacobian J := (�∗

0 =�
∗J−1)

≡ 1, readily available in the semi-Lagrangian model simulation, are relatively small and maxi-
mal 2:5 percent. However, the errors occur in sensitive regions for this �ow, in particular near
the oscillating boundary and where wave overturning and breaking is observed. Notably, the
time-step had to be reduced in the semi-Lagrangian simulation due to a too large ‘Lipschitz’
number L≡ ‖�t@ �v∗=@ �x ‖ (cf. Reference [21] for a discussion). These �ndings also agree
with the conclusions in Reference [28], where the �ow was most in error above complex
orography, as the semi-Lagrangian method looses local accuracy due to rapid changes in �ow
direction.

5. CONCLUSIONS

The energetic analysis described in Reference [9] has been useful in distinguishing between
(numerically or physically caused) irreversible and reversible processes in our direct numer-
ical simulations of the Plumb and McEwan laboratory experiment. Two simulations, using
an advective-form semi-Lagrangian and a �nite volume �ux-form Eulerian advection scheme,
respectively, have been compared by means of their energetic evolution. In the �ux-form
Eulerian case numerical dissipation acts to slightly decrease kinetic energy and to increase
background potential energy from internal energy by an equal amount, conserving the to-
tal energy of the Boussinesq system to the order of round-o� errors. This distinguishes the
�ux-form formulation from the semi-Lagrangian case, where unbalanced growth rates of back-
ground potential energy and kinetic energy lead to an overall increase of total energy. Our
�ndings are consistent with the conclusions in Reference [29]. The authors compared semi-
Lagrangian and �ux-form Eulerian simulations of a double shear layer with a prescribed
interface perturbation, where the advective-form algorithm develops an unphysical growth of
kinetic energy, followed by an increased dissipation rate. The numerically caused growth of
kinetic and background potential energy in our semi-Lagrangian simulation may arise in part
out of a systematic, irreversible conversion from external energy directly or indirectly enforced
through the (oscillating) boundary. Nevertheless, the physical signi�cance is unclear, since the
accumulated growth contributes to the growth of background potential energy, which does not
have a direct in�uence on the �ow evolution.
An important aspect of the �ow analysis is given by the time evolution of the irre-

versible instantaneous exchange rates and subsequently the time evolution of available poten-
tial energy. Three inherently di�erent volume-averaged measures, available potential energy,
transient kinetic energy and the absolute of the vertically integrated Reynolds stress similarly
characterize the �ow evolution. In particular, these di�er for the �ux-form Eulerian and the
semi-Lagrangian case, matching their altered �ow evolution. It identi�es the semi-Lagrangian
solution as a more viscous, physically incorrect account of the instantaneous reversible and
irreversible �uxes, primarily due to enhanced numerical dissipation which in return con-
tributes to the development of di�erent bifurcation points of the �ow evolution. The described
numerical sensitivities are relevant in our simulations, where the large-scale �ow is driven by
small-scale �uctuations, but may apply to simulations of the atmospheric QBO and geophysical
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�ows in general. In particular, this may be important for the future design of high resolu-
tion weather and climate models, since state-of-the-art numerical weather prediction relies on
the e�ciency of semi-Lagrangian methods. Thus, the energy diagram in Figure 3 has been
complemented by the potential contributions of the numerics of the simulation, in particular,
where the interplay of reversible and irreversible �uxes determines the �ow evolution.
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